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The thermoelastic behavior of a bi-material with a gas-filled interface crack is investigated.
The bi-material is subjected to a uniform tensile load and a uniform heat flow. The gas
exerts pressure on the crack surfaces and offers thermal resistance proportional to the crack
opening. The gas state is assumed to be described by the ideal gas law. The effects of gas
mass, gas thermal conductivity and heat flux on the crack opening, interface temperature
jump, gas pressure and stress intensity factors are analyzed. It is revealed that a bi-material
with a heat-conducting crack exhibits the heat flow directional effect.
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1. Introduction

Open internal and interface cracks in natural and technical structures can be filled with a certain
medium (liquid and/or gas) that penetrates from an environment, seeps or diffuses from the
surrounding material. The crack filler exerts pressure on the crack surfaces and thus affects the
distribution of stresses in the vicinity of the crack, and may cause its propagation. The stress-
-strain state of homogeneous and piecewise-homogeneous bodies with open cracks filled with a
liquid or a gas, the pressure of which depends on the applied load, was investigated by Alekseev et
al. (1992), Andreikiv and Hembara (2008), Balueva and Goldstein (1995), Evtushenko and Sulim
(1981), Feraille-Fresnet et al. (2003), Kaczyński and Monastyrskyy (2004), and Monastyrskyy
and Kaczyński (2007).
If bodies are heated, the heat transfer across an open crack and its filler occurs. It affects

distributions of temperature and thermal stresses in the vicinity of the crack. To describe the
heat transfer across the crack filler, Podstrigach and Kit (1967) applied Podstrigach’s model
of non-perfect thermal contact through the interstitial layer (Podstrigach, 1963), which was
formulated in the form of two equations linking boundary values of temperature and heat flows
on the crack surfaces. These equations include two prescribed effective thermal characteristics
of a crack – a transverse thermal conductance λn and a longitudinal thermal conductance λs.
Based on the physical essence of the effective characteristics λn and λs, Shvets and Martynyak
(1985) expressed them through the gap opening h(x) and the thermal conductivity λc of the gap
filler (λn(x) = λc/h(x), λs(x) = λch(x)) when investigating thermo-stressed contact of bodies
with interface gaps.

Since thermal conductivity of a gas in a crack is much smaller than thermal conductivities
of the surrounding materials, and the crack opening is of the order of elastic displacements and
is much less than the crack length, the heat transfer across the crack greatly exceeds the heat
transfer along the crack. The effective longitudinal thermal conductance λs can therefore be
neglected (λs = 0). In this case, the normal heat flow on the crack surfaces is continuous and
the temperature jump ∆T (x) = rn(x)qn(x) (rn(x) = 1/λn(x) – thermal resistance of the crack)
occurs between the crack surfaces. Martynyak and Chumak (2009) and Chumak and Martynuk



332 Kh. Serednytska et al.

(2012) used such a formulation to investigate the thermo-stressed contact between bodies with
filled interface grooves.

Matczyński et al. (1999) constructed an approximate analytical solution of the plane ther-
moelastic problem for a homogeneous isotropic body with a crack of variable height, filled with
an ideal gas, taking into consideration gas pressure and crack thermal resistance dependent on
the crack opening. Two cases were investigated: a) a completely open crack for the initial range
of compressive load; b) partial contact of the crack surfaces near the crack tips for the load
exceeding some critical load.

Applying the partially-thermally permeable crack model, Zhong and Lee (2012) and Zhong
and Wu (2012) solved the plane thermoelastic contact problems for a transversely isotropic
material and an orthotropic material with an open crack filled with a heat-conducting medium.
Li and Lee (2015) studied thermal stresses in an isotropic material with an open penny-shaped
crack filled with a heat-conducting medium.

Martynyak and Honchar (2005) investigated the temperature field and thermal stresses in
an isotropic bi-material with an interface crack filled with a heat-conducting medium. The effect
of the crack opening on the crack thermal resistance varying with mechanical and thermal
loads was taken into account, and the bi-material components were supposed to have identical
mechanical characteristics and different thermal characteristics. The similar problem was also
considered (Martynyak and Serednytska, 2017) for the case of different mechanical and thermal
characteristics of the bi-material components and the zero Dundurs parameter. Goldstein et al.
(2014) studied the influence of thermal resistances of a heat-conducting filler and surface thin
films on the partial closure of a crack.

In this paper, we will investigate thermo-elastic behavior of a bi-material that has a gas-
-filled interface crack and is subjected to a uniform tensile load and uniform heat flow, taking
into account pressure and thermal resistance of the crack filler.

2. Statement of the problem

Consider the problem of linear thermoelasticity assuming plane strain conditions. The bi-
-material is a plane consisting of two components D1 and D2 (Fig. 1) which have different
thermomechanical parameters: λ1, λ2 – thermal conductivities, α1, α2 – coefficients of line-
ar thermal expansion, ν1, ν2 – Poisson’s ratios, G1, G2 – shear moduli. We assume that the
Dundurs parameter (Johnson, 1985)

β =
(1− 2ν2)G1 − (1− 2ν1)G2
2G2(1− ν1) + 2G1(1− ν2)

of the bi-material is zero (β = 0). Then, the elastic parameters of the bi-material components
are interconnected, and the relation (1− 2ν1)G2 = (1− 2ν2)G1 takes place.
A crack is located at the bi-material interface. Its length equals 2a. A uniform tensile stress p

and a uniform steady heat flux q are imposed distant from the crack (y → ±∞) in the direction
normal to the interface. In addition, the bi-material components D1 and D2 are subjected to the
stresses S1 and S2 (x → ±∞), which are linearly distributed with respect to y. These stresses
prevent global distortion and longitudinal deformation of the bi-material components due to
tension p and heat flux q. An increase in the tensile stress p leads to the crack opening. The
crack is supposed to be filled with a gas which exerts pressure Pg on the crack surfaces and has
thermal conductivity λg. As a mathematical model of the gas, the ideal gas model is chosen.
The state of such a gas is described by the well-known ideal gas law. The influence of the filler
on the heat transfer across the crack is modeled (Martynyak and Chumak, 2009) by thermal
resistance which is directly proportional to the crack opening h(x) and inversely proportional
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Fig. 1. Bi-material with an interface crack

to the filler thermal conductivity λg. At the interface outside the crack, the conditions of the
perfect thermal and mechanical contact are assumed.

The thermal and mechanical boundary conditions are as follows:

— on the crack surfaces (y = 0, |x| < a)

q+y = q
−

y T− − T+ = h(x)
λg
q+y

σ+y = σ
−

y τ+xy = τ
−

xy σ−y = Pg τ−xy = 0

(2.1)

— at the interface outside the crack (y = 0, |x|  a)

T+ = T− q+y = q
−

y σ+y = σ
−

y

τ+xy = τ
−

xy u+ = u− v+ = v−
(2.2)

— at infinity

q∞y = q q∞x = 0 σ∞y = p

τ∞xy = 0 σ∞x1 = S1 σ∞x2 = S2
(2.3)

Here and further on, T is temperature; qx, qy are the components of heat flow; u, v –
displacement components; σx, σy, and τxy are stress components; the superscripts “+” and “−−”
denote the boundary values of a function on the x-axis in the upper and lower half-plane,
respectively; Sn (n = 1, 2) is the thermal distortivity of the material Dn (Dundurs, 1974)

Sn =
2Gnηnq

1− νn
y +

νnp

1− νn
ηn =

αn(1 + νn)

λn
n = 1, 2

3. Solution to the problem

Using the technique of solving thermoelastic problems for bi-materials with open cracks (Marty-
nyak and Serednytska, 2017), we present the thermo-stressed state in the bi-material through a
crack opening h(x) = v+−v−, a temperature jump γ(x) = T−−T+ between the crack faces, and
a tangential displacements jump U(x) = u− − u+. Satisfying conditions (2.1)-(2.3), we obtain
a nonlinear system of singular integro-differential equations (SID equations) for functions h(x),
γ(x) and U(x)
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1

π

a
∫

−a

h′(t)

t− x dt +
λη−

2
γ(x) = − 1

2G∗
(p+ Pg) |x| < a

λg
γ(x)

h(x)
− λ
2π

a
∫

−a

γ′(t)

t− x dt = q |x| < a

1

π

a
∫

−a

U ′(t)

t− x dt −
λη+

2π

a
∫

−a

γ(t)

t− x dt = 0 |x| < a

(3.1)

where λ = 2λ1λ2/(λ1+λ2), G
∗ = G1(1−κ2)/(1−κ2), κn = 3− 4νn,η− = η2− η1, η+ = η1+ η2.

The desired crack opening h(x), temperature jump γ(x) and tangential displacements jump
U(x) must satisfy the following conditions at the ends of the crack

h(±a) = 0 γ(±a) = 0 U(±a) = 0 (3.2)

Since the tangential displacements jump U(x) does not enter Eqs. (3.1)1 and (3.1)2 of the
system and depends only on the temperature jump γ(x), we can solve the system of Eqs. (3.1)1
and (3.1)2 at first, and then find the solution to Eq. (3.1)3 with the known γ(x).

Taking into account third condition (3.2), we find a solution to singular integral equation
(3.1)3 that relates the function U

′(x) with the temperature jump γ(x)

U ′(x) =
λη+

2

(

γ(x)− 1

π
√
a2 − x2

a
∫

−a

γ(x) dx

)

(3.3)

The gas pressure Pc is determined from the ideal gas law

PgVg =
mgRTg
µg

(3.4)

Here, mg is gas mass, Vg – gas volume per unit of the crack length (l = 1m) in the direction
perpendicular to the plane of Fig. 1, µg – gas molar mass, Tg – absolute gas temperature,
R = 8.3145 J/(Kmol) – the universal gas constant.

The gas volume can be expressed in terms of the crack opening as

Vg = l

a
∫

−a

h(x) dx (3.5)

Taking into account that the temperature jump on the crack surfaces has a small value in
comparison with the reference temperature, we assume that the absolute gas temperature is
equal to the reference temperature

Tg = T0 (3.6)

Substitution of expressions (3.5) and (3.6) into ideal gas law (3.4) yields the following relation
between the gas pressure Pg and the crack opening h(x)

Pg =
mgRT0
µg
l

a
∫

−a

h(x) dx (3.7)
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Taking into account (3.7), the system of SID equations (3.1)1, (3.1)2 can be rewritten as

1

π

a
∫

−a

h′(t)

t− x dt +
λη−

2
γ(x) +

mgRT0

2G∗µgl
a
∫

−a

h(x) dx
= − 1
2G∗
p |x| < a

λg
γ(x)

h(x)
− λ
2π

a
∫

−a

γ′(t)

t− x dt = q |x| < a

(3.8)

The structure of system (3.8) indicates the fact that the solution of the considered problem
essentially depends on the properties of the filler, characteristics of the materials and mechanical
and thermal loads.

Let us consider the case of identical thermal distortivities of the materials (η1 = η2). Then
η− = 0, and system (3.8) has the following form

1

π

a
∫

−a

h′(t)

t− x dt +
mgRT0

2G∗µgl
a
∫

−a

h(x) dx
= − 1
2G∗
p |x| < a

λg
γ(x)

h(x)
− λ
2π

a
∫

−a

γ′(t)

t− x dt = q |x| < a

(3.9)

The system of SID equations (3.9) is partially separated. The function γ(x) does not en-
ter equation (3.9)1 and the crack opening h(x) does not depend on the imposed heat flow.
Nevertheless, the temperature jump γ(x) depends on the crack opening h(x) (see Eq. (3.9)2).
The temperature jump and temperature field in the bi-material are therefore dependent on the
applied mechanical load and the gas pressure.

In the papers (Martynyak and Honchar, 2005) and (Martynyak and Serednytska, 2017),
the investigation of the thermo-stressed state of a bi-material in the case of different thermal
distortivities of bi-material components (η1 6= η2, η− 6= 0) was conducted. It took into account
the heat conductivity of the crack filler but did not take into account its pressure. The functions
h(x) and γ(x) were determined from the system of SID equations

1

π

a
∫

−a

h′(t)

t− x dt +
λη−

2
γ(x) = − 1

2G∗
p |x| < a

λg
γ(x)

h(x)
− λ
2π

a
∫

−a

γ′(t)

t− x dt = q |x| < a
(3.10)

The system of SID equations (3.10) is non-linear and interconnected. The temperature and
stresses in the bi-material are therefore interconnected too.

When thermal distortivities of the materials are different, changes of the coefficient of thermal
conductivity λg and heat flow density q have different influence on the crack opening h(x) for
two opposite heat flow directions (Martynyak and Serednytska, 2017): heat flowing from the
material with a smaller thermal distortivity into the material with a larger thermal distortivity
(qη− > 0) and, vice versa, heat flowing from the material with the larger thermal distortivity
into the material with the smaller thermal distortivity (qη− < 0). This effect is called as the
heat flow directional effect or thermal rectification (Roberts and Walker, 2011).

In this paper, we investigate the heat flow directional effect taking into account the simultane-
ous influence of the thermal conductivity and pressure of the gas in the crack. The parameter η−
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is nonzero in system (3.8). To solve system (3.8), we will apply an analytico-numerical iteration
procedure which is a generalization of the procedure developed in (Martynyak and Serednytska,
2017).

Mode I stress intensity factorKI = limx→a
{
√

2π(x − a)σy(x, 0)
}

and Mode II stress intensity
factor KII = limx→a

{
√

2π(x− a)τxy(x, 0)
}

in the vicinity of the right crack end are expressed
through the temperature jump and the crack opening (Martynyak and Serednytska, 2017)

KI = −2G∗ lim
x→a

[

√

2π(a− x)h′(x)
]

KII = −
λη+

G∗
√
πa

a
∫

−a

γ(t) dt (3.11)

4. Numerical calculations and analysis of results

For numerical calculations, we introduce the following dimensionless values: coordinate
x = x/a, crack opening h = h/a, temperature jump γ = γλη−, heat flux q = qaη−, tensile
stress p = p/G∗, gas pressure P g = Pg/G

∗, gas thermal conductivity λg = λg/λ, gas mass
mg = mgRT0/(G

∗µga
2l), Mode I and Mode II stress intensity factors KI = KI(G

∗
√
a) and

KII = KIIη
−/(G∗η+

√
a).

System (3.9) in the dimensionless form is

1

π

1
∫

−1

h
′

(t)

t− x dt+
1

2
γ(x) +mg

/(

2

1
∫

−1

h(x) dx
)

= −1
2
p |x| < 1 h(±1) = 0

λg
γ(x)

h(x)
− λ
2π

1
∫

−1

γ′(t)

t− x dt = q |x| < 1 γ(±1) = 0

(4.1)

The dimensionless heat flux is positive (q > 0) when heat flows into the material with the
larger thermal distortivity, and the heat flux is negative (q < 0) when heat flows into the material
with the smaller thermal distortivity.

The iteration procedure has different schemes for these two opposite directions of the heat
flow.

For q > 0, the iterates of the desired functions are found from the following linear system of
SID equations

1

π

1
∫

−1

h
′(i)
(t)

t− x dt +
1

2
γ(i−1)(x) +mg

/(

2

1
∫

−1

h
(i−1)
(x) dx

)

= −1
2
p |x| < 1

λg
γ(i)(x)

h
(i)
(x)
− λ
2π

1
∫

−1

γ′(i)(t)

t− x dt = q |x| < 1

h
(i)
(±1) = 0 γ(i)(±1) = 0

(4.2)

where i = 1, 2, . . ., γ(0)(x) = 0, h
(0)
(x) = (p/2)

√
1− x2. The initial iterate h(0)(x) physically

corresponds to the case when the heat flow is absent.

For q < 0, the iterates of the desired functions are found from the following linear system of
SID equations
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(4.3)

where i = 1, 2, . . ., γ(0)(x) = 0, h
(0)
(x) = [pλg/(2λg − q)]

√
1− x2. In this case, the initial iterate

h
(0)
(x) takes into account thermal strains in the bi-material.

Systems (4.2) and (4.3) are solved using the collocation method (Gabdulkhaev, 1994).

The iteration process is finished when

∣

∣

∣

h(i)(0) − h(i−1)(0)
h(i−1)(0)

∣

∣

∣ ¬ 10−5
∣

∣

∣

γ(i)(0) − γ(i−1)(0)
γ(i−1)(0)

∣

∣

∣ ¬ 10−5 (4.4)

The crack opening h(x), temperature jump γ(x), gas pressure P g and stress intensity factors
KI and KII are analyzed for a given set of the input parameters p, q, λg, mg, and T 0. The
results of numerical calculations are shown for p = 0.01 and the two opposite directions of heat
flow. The solid curves correspond to the case of heat flowing into the material with the larger
thermal distortivity (q > 0), while dashed curves correspond to the case of heat flowing into the
material with the smaller thermal distortivity (q < 0).

Figure 2a illustrates the crack opening h(x) for different values of the gas mass mg, λg = 0.01
and q = ±0.01. Curves 1 and 4 correspond to the case when the gas exerts no pressure on the
crack surfaces. The crack opening increases with the increasing mass pf the gas for the two
opposite heat flow directions. For fixed values of the input parameters, the crack opening in the
case of heat flow into the material with the larger thermal distortivity is observed to be greater
than the crack opening in the case of the opposite heat flow direction.

A noteworthy feature of the results shown in Fig. 2a is that the crack opening changes upon
reversal of the direction in which heat is flowing. Consequently, the heat flow directional effect
takes place.

Figure 2b shows an increase of the absolute value of the temperature jump |γ(x)| with an
increase of the gas mass mg for both heat flow directions. The distribution of the temperature
jump is qualitatively similar to the crack opening distribution.

Fig. 2. (a) The crack opening h(x) and (b) the absolute value of the temperature jump |γ(x)| for
λg = 0.01 and various values of mg: 1, 4 – mg = 0; 2, 5 – mg = 0.00001; 3, 6 – mg = 0.0001
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The dependences of the gas pressure P g on the gas mass mg, the gas thermal conductivity λg
and the absolute value of the heat flux |q| for both heat flow directions are given in Figs. 3a
and 3b. The gas pressure increases with the increasing mass of the gas and is greater in the case
of heat flowing into the less distortive material. An increase in the gas thermal conductivity λg
or the absolute value of the heat flux |q| leads to a decrease in the gas pressure P g when q < 0
and an increase in P g when q > 0. The difference between gas pressure values increases with
decreasing λg and increasing |q| for both heat flow directions.

Fig. 3. The gas pressure P g vs. gas mass mg: (a) for |q| = 0.01 and various values of λg: 1, 4 –λg = 0.01;
2, 5 – λg = 0.02; 3, 6 – λg = 0.04 and (b) for λg = 0.01 and various values of |q|: 1, 4 – |q| = 0.01;

2, 5 – |q| = 0.02; 3, 6 – |q| = 0.03

The dependences of Mode I stress intensity factor KI and the absolute value of Mode II stress
intensity factor |KII| on the gas mass mg are shown in Figs. 4a and 4b. KI and |KII| increase
with the increasing mass of the gas mg and are greater in the case of the heat flow to the
material with the larger thermal distortivity. KI increases with the increasing heat flux |q| when
q > 0. For the opposite heat flow direction, KI decreases with increasing |q|. |KII| increases with
increasing |q| for both heat flow directions (Fig. 4b). The difference between the values of the
stress intensity factors increases with an increase in the heat flux for both heat flow directions.

Fig. 4. (a) Mode I stress intensity factor KI and (b) the absolute value of Mode II stress intensity
factor |KII| vs. gas mass mg for λg = 0.01 and various values of |q|: 1, 3 – |q| = 0.01; 2, 4 – |q| = 0.02

The stress intensity factors KI and |KII| versus the gas thermal conductivity λg are shown
in Figs. 5a and 5b for various values of the gas mass mg. With the increasing λg, KI increases
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when q < 0 and decreases when q > 0. |KII| decreases with increasing λg for both heat flow
directions. The difference in the values of the stress intensity factors increases with a decrease
in the gas thermal conductivity, but does almost not change with a change of the gas mass. It
can also be seen that the stress intensity factors are less when the gas pressure is zero (curves 1
and 4 in Figs. 5a and 5b).

Fig. 5. (a) Mode I stress intensity factor KI and (b) the absolute value of Mode II stress intensity
factor |KII| vs. gas thermal conductivity λg for |q| = 0.01 and various values of mg: 1, 4 – mg = 0;

2, 5 – mg = 0.00001; 3, 6 – mg = 0.0001

5. Conclusions

The thermoelastic problem for a bi-material with an interface crack filled with an ideal gas has
been considered. Both thermal (thermal conductivity) and mechanical (pressure) influences of
the gaseous crack filler have been taken into account. The heat transfer across the crack has
been simulated by the thermal resistance which is directly proportional to the crack opening
and inversely proportional to the gas thermal conductivity. The gas pressure has been determi-
ned using the ideal gas law equation. The problem under consideration has been reduced to a
nonlinear system of singular integro-differential equations, and the method of successive appro-
ximations has been applied for its solving. The dependences of the crack opening, temperature
jump, gas pressure as well as Mode I and Mode II stress intensity factors on the gas mass, gas
thermal conductivity and heat flux have been analyzed.

All the parameters analyzed change upon reversal of the direction in which heat is flowing.
Consequently, the bi-material with the heat-conducting crack exhibits the heat flow directional
effect.

It has been revealed that the gas pressure increase contributes to the crack opening. An
increase in the gas thermal conductivity leads to a decrease in the gas pressure when heat flows
into a less distortive material and an increase in the gas pressure when heat flows into the
material with a larger thermal distortivity. For the two opposite heat flow directions, Mode II
stress intensity factor increases with the increasing absolute value of the heat flux or decreasing
gas thermal conductivity. On the other hand, an increase in the heat flux absolute value or a
decrease in the gas thermal conductivity leads to an increase in Mode I stress intensity factor
when heat flows into the material with the larger distortivity and its decrease in the case of the
opposite heat flow direction. For both heat flow directions, the stress intensity factors increase
when the gas mass increases and are smaller when the gas pressure is zero.
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